If it's not what You are looking for type in the equation solver your own equation and let us solve it.
66n^2+54n=0
a = 66; b = 54; c = 0;
Δ = b2-4ac
Δ = 542-4·66·0
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-54}{2*66}=\frac{-108}{132} =-9/11 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+54}{2*66}=\frac{0}{132} =0 $
| (x/6)+(2x/3)=5 | | 12.7=j–3.4 | | 7a+4a=165 | | -3.5=v0.2 | | .5=n+1.28 | | 6x=15-18x | | 13x-5=4+11x | | -3.5=v | | 8-7m=-3+4 | | 3.8x+5.2×-6.7=11.3 | | 2x-6x-13=-4x+7-13 | | 20x^2+16x-4=0 | | 5(5x+2)=3(9x+2) | | 20=-2b+4 | | -25-6x=5 | | 100=16x+x-7 | | 3(w+8)=9w-6 | | X+12+5y+7+40=180 | | 4=x/4-3 | | 56.25=75-0.125d | | 14r-8=20 | | 0=4y^2-12y | | -2x+10=7x+37 | | a÷5.7=1.5 | | 32-4c=40 | | 6-9x+12=18-9x | | 3x-5=5x-41 | | 81/6=23/5+n | | -3x+35=-7(x-9) | | 3x+27=10x-72 | | -12+7t=3t | | 4(4x+1)=3x-4(6-1x)+8 |